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SUMMARY 
A new method of estimating the extent of the artificial dissipation effects in any solution obtained with a Navier- 
Stokes flow solver is described Rather than recalculating the flow on a more refined grid, the solver may be used 
on the same grid to calculate the flow of an ‘artificially dissipative fluid’, which is a fluid having dissipate 
properties which arise entirely from the solution method itself. This is done by setting the viscosity and heat 
conduction coefficients in the Navier-Stokes solver to zero everywhere in the flow, while at the same time 
applying the usual boundary conditions at solid boundaries. An ‘artificially dissipative flow’solution will be found 
where the dissipation effects depend entirely on the solver itself. By comparing this solution with that obtained on 
the same grid with the solver working in its normal mode, one can estimate whether further grid refinement is 
required, without necessarily producing an extensive series of solutions on different grids. 
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1. INTRODUCTION 

It is well known that numerical schemes for the solution of the governing equations of fluid mechanics 
can introduce errors which can be interpreted as arising from an artificial viscosity and heat conduction 
which are inherent in the solution method itself. Often the magnitude and nature of this inherent 
artificial dissipation cannot be quantified theoretically. It is the purpose of this work to present a 
method whereby the effect of the artificial viscosity and heat conduction can be readily estimated for a 
particular flow and a particular grid. 

The method is to simulate a viscous, heat-conducting flow where the dissipative properties of the 
simulated fluid arise entirebjium the numerical method itself. This is done by applying a standard 
Navier-Stokes computational method to a particular problem, but specifying that the physical viscosity 
and thermal conductivity of the fluid are zero everywhere throughout the flow. At solid wall boundaries 
the usual no-slip and themally conducting surface conditions are applied and the stresses acting on the 
fluid in contact with the boundary are calculated using the correct physical viscosity and thermal 
conductivity for the problem under consideration. 

Under these conditions a perfect numerical method would be set the apparently impossible task of 
finding a solution of the Euler equations for an ideal fluid with boundary conditions appropriate to a 
dissipative fluid; vorticity and energy would be injected into the flow by the wall boundary condition 
and, since there should be no way for these quantities to dissipate away from the wall in an ideal fluid, 
vorticity and energy should accumulate to infinite or non-physical values. An indication of a very good 
Navier-Stokes code might be that it fails in some catastrophic way under these conditions. 
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In practice, however, a solution may be obtained which contains the expected features of a 
dissipative flow. It is a wise precaution then to inspect the solution which is produced for the artificial 
fluid and compare it with the solution produced by the method working in its normal mode. For 
example, if the thickness of boundary layer developed for the artificial fluid is small compared with the 
boundary layer thickness developed by the solver working in its normal mode, this would be a strong 
indication that the artificial dissipation is negligible and the solver is reliable for that particular problem 
and that particular grid. If not, then further grid refinement is required. 

Examples are given here of the boundary layers developed in a simple test flow for the artificially 
dlssipative fluid associated with three Navier-Stokes solvers. 

2. THE NAVIER-STOKES EQUATIONS IN FINITE VOLUME FORM 
Consider a space (x. y ,  z) divided into N contiguous elements of volume 5 forj  = 1, . . . , N. Let S be 
the surface of 5 and i the outward normal and let the unit vectors 5 and 4 form, with h, an orthogonal 
set of local axes at the surface S. Denote the components of the local fluid velocity v relative to these 
axes as (vn, up, vq). The Navier-Stokes equations can be written for each volume as 

( F E + F D ) d Y = O ,  

where 

For brevity in (2) we have not written the necessary transformation of momentum from a varying set of 
axes (n - p  - q )  attached to a surface element of the control volume to a global fixed set of axes. 

In (1) the fluxes across S are written in two parts: the Euler fluxes 

and the Navier-Stokes dissipative fluxes 

In (2), eint is the specific internal energy and a perfect gas equation of state, p = pRT = p(y - l)eht, 
where R is the ordinary gas constant, has been assumed. 
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The rnj in (4) are the stresses (excluding the thermodynamic pressure) acting on the surface S and $,, 
is the component of the heat flux vector normal to S. These are related to the strains in the fluid by the 
constitutive relations 

~ n n  = ( 4 ~ / 3  + pB)aO,/aX, + ( P B  - 2~/3)(aV,/hp + hq/hq), (5 )  

rnp = P(&n/hp + h p / h n ) *  (6) 
rnq = AaV,/hq + h q / a X , ) ,  (7) 

+,, = --K aT/aX,,, (8) 
where p, pB and K are the coefficients of dynamic viscosity, bulk viscosity and thermal conductivity 
respectively and (x,,, x,,, xq)  are position co-ordinates measured in the directions of the unit vectors i, i 
and 4 attached to the surface S. 

It is common to construct a Navier-Stokes solver by taking a Euler solver with its set of fluxes and 
adding in the appropriate Navier-Stokes dissipative fluxes. The Euler solver will make some estimate 
of the fluxes which could be Written as FE + F A  to show that this estimate will contain some errors FA 
which are the artificial dissipative terms. The magnitude of FA may vary fiom point to point in the grid. 
When the Navier-Stokes (physically corrrect) dissipative terms are added, the final flux terms in the 
governing equations become F, + F A  + FD (where we have ignored any error in the estimation of FD). 
Clearly, for the Navier-Stokes solver to be accurate, we require that (F,J << IFDI. 

3. TEST CASE: COMPRESSIBLE FLOW OVER A FLAT PLATE 

The test case is one that has been used previo~s ly '~~  to test some finite volume Navier-Stokes codes. 
The body is a flat plate aligned parallel to the freestream velocity. The freestream Mach number and 
tempemture are MI = 2 and T,  = 222 K and the wall temperature is fixed at T, = T I .  A perfect gas 
with a ratio of specific heats of y = 1 -4 is assumed and the viscosity of the gas is given by a Sutherland 
viscosity law 

CC = Clo(T/To)(To + Sv)/(T + S")? (9) 
where 1 ~ 0  and To are reference quantities and Sv = 110.4 K is a constant. The thermal conductivity is 
given by 

k = Cp p / h ,  (10) 

where C,, is the specific heat at constant pressure and Pr = 0.72 is the constant Prandtl number. The 
fieestream Reynolds number based on the plate length L is Re, = 1.65 x 10'. 

A spectral boundary layer solution, which was obtained by Jacobs' using the method of Pruett and 
Street: is available for this case. The temperature profile across the boundary layer at the station 
x / L  = 0.916 is shown in Figure 1.  There is a slight error in the boundary condition for the spectral 
solution, where freestream conditions have been imposed at the edge of the boundary layer. The finite 
volume solutions later contain the weak oblique leading edge interaction shock (which is generated by 
the displacement effect of the boundary layer), so the conditions at the edge of the boundary layer are 
slightly different from the freestream conditions. 

4. THREE FINITE VOLUME METHODS 
The three methods for calculating the inviscid fluxes which are considered here are 

(i) Pullin's equilibrium flu method (Em5 (a kinetic-theory-based method) 
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Figure 1 .  Spectral solution for temperature in boundary layer at x / L  = 0.916 MI = 2.0, Re, = 1.65 x 16, TI = T, = 222 K 

(ii) a Godunov scheme using an approximate Riemann solver6 
(iii) the equilibrium interface method (EIM)3 (a kinetic-theory-based Euler solver derived by 

eliminating most of the artificial dissipation from the equilibrium flux method). 

A single code was used which had available the options of using any of these three methods to 
calculate the inviscid fluxes and also the option of invoking first- or second-order spatial accuracy 
when estimating the Euler fluxes. For first-order spatial accuracy, no gradients of any flow properties 
across the cells are assumed when estimating the states at cell interfaces; for second-order accuracy, 
linear (minmod) gradients of flow properties across cells are assumed. In both cases, second-order- 
accurate estimates of the gradients of flow properties necessary to determine the Navier-Stokes 
dissipative fluxes (see (5)-(8)) were calculated as described by Macrossan and Olive?. 

Figure 2 shows the temperature variation through the boundary layer as calculated using the 
different methods, compared with the spectral solution. These results were obtained using the spatially 
first-order method and the same grid in each case. The smallest cell size in the y-direction was 
Ay % 5 x lOP4L and there were approximately 25 cells across the boundary layer thickness. It can be 
seen that the EIM and Riemann solver give much better agreement with the spectral solution than does 
the EFM, which is clearly far more dissipative than the other methods. This is in accord with previous 
work which showed that while the EFM is robust and accurate for high-Mach-number flows, the 
artificial dissipation in the EFM increases for low Mach numbers.2s7 
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Figure 2. First-order finite volume methods compared with spectral solution (- )ofFigure 1:---- ,EIM;--- ,  
R~CIIIXUI S O ~ V ~ C ;  - -, EFM (52 x 252 grid) 
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Figure 3. Second-order finite volume methods compared with spectral solution (- )o f  Figure 1: ----, E M ;  ---, 
R i e m a ~ ~ ~  s o l ~ ~  --, EFM (52 x 252 grid) 

An arbitrary measure of the boundary layer thickness A has been taken as the perpendicular distance 
to the surface from the point where the temperature ratio T/T, has fallen to 1.01. The boundary layer 
thicknesses so defined are: EIM, A/x = 15.4 x Riemann, A/x = 16-6 x EFM, 
A/x = 652.9 x lop3. The results for the second-order versions of all these methods are shown in 
Figure 3. The boundary layer thicknesses for the second-order codes are: EIM, A/x = 15x lo-’; 
Riemann, A/x = 1 5 ~ 1 0 - ~ ;  EFM, A/x = 20.8 x For later reference the ‘exact’ or ‘true’ 
boundary layer thickness has been taken as close to A,,/x = 15 x lo-’. 

5 .  ARTIFICIALLY DISSIPATIVE FLOWS 

To demonstrate the inherent artificial dissipation directly, we can show how a boundary layer develops 
when the no-slip, heat-conducting boundary condition is applied at the plate surface and when the flux 
terms everywhere else consist only of the solver’s particular approximation to the Euler fluxes. The 
results for the second-order EFM are shown in Figure 4. The inherent dissipation induces a boundary 
layer of thickness A/x = 16.7 x which is some 80% of the boundary layer thickness developed 
by the solver in its normal mode and is greater than the true boundary layer thickness. It is clear that 
the inherent dissipation in the second-order EFM on this grid is at least as great as the true Navier- 
Stokes dissipation. 

Compared with the EFM, the other two methods have a small inherent artificial dissipation. Figure 5 
shows the boundary layer developed from the inherent dissipation in the first- and second-order 
versions of the Riemann solver method. The temperature has fallen to below 1.01 T, within Seven cells 
from the surface for the first-order calculation and within five cells for the second-order calculation. 
The artificial boundary layer thickness Aa for the second-order calculation is AJx = 2.33 x 
This is 15.5% of the boundary layer thickness predicted by the solver working in its normal mode and 
the results shown in Figure 3 indicate that the normal mode solution is very accurate. This suggests 
that the ratio AJA, which is the ratio of the artificial to normal mode boundary layer on the same grid, 
might be used to indicate whether any significant improvement in the solution would be obtained by 
repeating the calculation on a more refined grid. 

Figure 6 shows a summary of results obtained for the three methods on a variety of different grids. 
Each data point shows, for a given numerical method and a given grid, the percentage deviation of A 
from the exact value as a function of the ratio Aa/A. As the ratio Aa/A falls below about 20%, the 
predicted boundary layer thickness is very accurate and little change is given by using a more refined 
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Figure 4. Second-order EFM results for no-slip and heatconducting wall boundary condition with (- - -) and without (- - -) 
Navier-Stokes dmipative fluxes added in (52 x 252 grid) 
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Figure 5. Inherent dissipation boundary layers for first- and secondadex versions of Riemann solver mahod (52 x 252 grid) 

grid. We propose that a value of AJA c 18% can be used as an indication that the grid is sufficiently 
refined and that no significant improvement would be obtained by repeating the calculation on a 
different grid. By this criterion the best solution shown in Figure 2 (iirst-order EM), for which 
AJA = 16.7%, would be accepted and the others rejected, while both the EIM and Riemann solver 
solutions shown in Figure 3, for which AJA = 12.8% and 15.5% respectively, would be accepted. 

6. CONCLUSIONS 

A method of estimating the effects of artificial dissipation in a solution method for the Navier-Stokes 
equations has been proposed. In this method a flow solution is developed in which the only dissipation 
is the artificial dissipation which is inherent in the method itself, except at the surface, where the usual 
Navier-Stokes boundary conditions are applied. A boundary layer develops, as a result of the inherent 
artificial dissipation of the method, and the thickness of this boundary layer compared with the 
thickness of the boundary layer predicted by the solver working in its normal mode illustrates how 
much the artificial dissipation can affect the solution. In other, more complicated flows, different 
dissipative effects will be apparent and we expect that these effects will also be produced in the 
artificially dissipative flow. 

Before relying on any numerical solution of the NavierStokes equations obtained in any new 
application, it would be wise to compare that solution with what we have called the 'artificially 
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Figure 6. Error in predicted boundary layer thickness A for different numerical methods and grids: 0, first-ordcr EM; m, 
second-order EIM; A, f intader  Riemann solvw, A, second-order Riemann solver, V, second-order EFM 

(26 x 126, 52 x 63, 52 x 126,52 x 252 and 52 x 504 grids) 

dissipative solution’ on the same grid. This is a much less computationally expensive task than that of 
repeating the calculation on a h e r  grid. It is suggested that if the artificially dissipative effects can be 
estimated to be less than about 18% of the dissipative effects seen when the solution method is working 
in its normal mode, then it is likely that there will be little point in repeating the calculation on a h e r  
grid. 

It is not likely that grid refinement studies or extrapolation techniques can be entirely abandoned in 
favour of the method proposed here, but an inspection of the artificially dissipative flow solution can 
provide a salutary insight concerning the artificial dissipation contained in a numerical solution of the 
Navier-Stokes equations. As experience is gained in assessing solution accuracy by this method, new 
criteria for what is an acceptably grid-independent numerical solution of the Navier-Stokes equations 
might be developed. 
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